
Demystifying the (In)Security of QR Code-based Login in Real-world Deployments

Xin Zhang1, Xiaohan Zhang1, Bo Zhao1, Yuhong Nan2, Zhichen Liu1,
Jianzhou Chen1, Huijun Zhou1, and Min Yang1

1Fudan University 2Sun Yat-sen University

Abstract
QR code-based Login (QRLogin) has emerged as a preva-

lent method for web account authentication, offering a more
user-friendly alternative to traditional username and password
entry. However, despite its growing popularity, the security
of QRLogin has been overlooked. In particular, the lack of
standardized QRLogin design and implementation guidelines,
coupled with its wide deployment variability, raises significant
concerns on the real-world deployments of QRLogin.

This paper presents the first systematic study on the secu-
rity of QRLogin in real-world deployments. We begin our
research with real-world studies to understand the deploy-
ment status of QRLogin and user perceptions of this novel
authentication paradigm, which assists us in establishing a
realistic threat model. We then proceed with a systematic
security analysis by generalizing the typical workflow of QR-
Login, examining how key variables adhere to common se-
curity principles, and ultimately exposing 6 potential flaws.
We conduct security analysis on real-world QRLogin deploy-
ments with a semi-automatic detection pipeline, and reveal
surprising results that 47 top websites (43% of tested) are vul-
nerable to at least one of the above flaws. These design and
implementation flaws can lead to 5 types of attacks, including
Authorization Hijacking, Double Login, Brute-force Login,
Universal Account Takeover, and Privacy Abuse. We have
responsibly reported all the identified issues and received 42
vulnerability IDs from official vulnerability repositories. We
further provide an auditing tool and suggestions for devel-
opers and users, contributing a concerted step towards more
secure implementations of QRLogin.

1 Introduction

With the proliferation of mobile devices and the widespread
adoption of QR codes, a novel authentication mechanism,
QR code-based Login, abbreviated as QRLogin, has gained
increasing utilization. As shown in Figure 1, to log into a
website, a user can opt to use a mobile app, typically operated

Agree?Agree?

APP

Scan to Login

Website

Input Password

Scan QR Code Confirm Login

Scan to LoginInput Password or

Website

Login Options

APP

Figure 1: Demonstration of the QRLogin mechanism.

by the same principal as the website or from the cooperating
third parties1, to scan a QR code displayed on the website.
Subsequently, the user confirms the login via the mobile app
and finally logs into the website.

From the perspective of user convenience, the QRLogin
mechanism eliminates the need for users to remember and
type passwords, allowing them instead to use their authenti-
cated QRLogin app, thus simplifying the authentication pro-
cess. From a security standpoint, QRLogin requires users to
have physical access to a personal mobile device and the QR-
Login app, which may be secured by various methods such
as fingerprint scanning and facial recognition. Therefore, it
adds an additional layer of security, i.e., out-of-band security
from the perspective of the website.

At first glance, QRLogin is considered more convenient
and secure than traditional authentication methods such as
password-based login on the website. However, as a new au-
thentication paradigm, to the best of our knowledge, there are
no established standards or specifications on how to securely
design and implement the QRLogin process. Existing imple-
mentations are largely driven by individual interpretations and
developments, leading to a diverse and complex array of QR-
Login deployments with varying levels of security. Given that
the QRLogin is an emerging and promising authentication
scheme, the landscape and security of its real-world deploy-

1To ease illustration, the website deploying QRLogin will be called QR-
Login website, while the scanning app is called QRLogin app in the rest of
this paper.

ments remain open research questions, requiring a systematic,
in-depth understanding and evaluation.
Our Work. In this paper, we present the first systematic study
of QRLogin security in real-world deployments. We begin by
collecting and analyzing 350 popular QRLogin websites to
assess their prevalence and significance, as well as conducting
a user study to investigate users’ perceptions on QRLogin
security.

To further explore the security issues in these websites, we
summarize the common workflow for the QRLogin mecha-
nism across its lifecycle, and pinpoint the key security-related
variables involved in this workflow, i.e., QrId, SessionID,
and Tokens (see §3.2 and §3.3). Following this, we exam-
ine the common security principles, including confidentiality,
integrity, and consistency of and between these key variables.
This principled analysis enables us to identify six potential im-
plementation flaws, including Unbound SessionId, Reusable
QrId, Predictable QrId, Controllable QrId, Vulnerable Iden-
tity Verification, and Unintentional Privacy Leakage.
Measurement and Findings. To further evaluate the pres-
ence and the impact of the aforementioned flaws, we employ
a semi-automated pipeline to identify the insecurity of QR-
Login in real-world deployments. Our findings reveal that
47 out of 109 (43%) tested websites exhibit at least one type
of security flaws, which can lead to five types of attacks, in-
cluding Authorization Hijacking, Double Login, Brute-force
Login, Universal Account Takeover, and Privacy Abuse (see
§4.3 for more details).

For example, a popular Russian social media platform em-
ploys QRLogin but its implementation exhibits two security
flaws: Unbound SessionId and Reusable QrId. Consequently,
if an attacker gains knowledge of the victim’s QrId (the iden-
tifier of the QR code), they can log into the victim’s account
once the victim completes the QRLogin, leaving the victim
unaware of the compromise, leading to the Double Login
Attack. As another severe example, our study identifies two
websites, including a leading network disk provider with more
than 100 million users and a Chinese provincial government
website2, both exhibit the flaw Vulnerable Identity Verifica-
tion. This vulnerability allows attackers to universally log into
any account, provided they know just the phone number or
account ID of the intended victim, leading to the Universal
Account Takeover Attack. Given that both websites handle
highly sensitive personal data (e.g., personal and business
photos and files), the potential consequences of such breaches
are particularly severe (more details in §4.3).

We responsibly report these vulnerabilities to the develop-
ers and regulators. At the time of paper submission, we have
received a total of 42 acknowledgements from related parties,
including the assignment of 17 CNVD and 25 NVDB IDs3.

2Anonymized at the vendors’ request.
3CNVD (China national vulnerability database, www.cnvd.org.cn) and

NVDB (National vulnerability database, www.nvdb.org.cn) are two official
vulnerability repositories in China.

To further enhance the security of QRLogin, we consider
the stakeholders in QRLogin. In particular, for developers, we
provide an automated auditing tool to evaluate and enhance
their QRLogin implementations with specific mitigation ad-
vice. For users, we provide actionable suggestions for safer
user practices.

In summary, the contributions of this paper are as follows:
• We perform the first systematic, in-depth study of security

issues in the QRLogin scheme. Our research demystifies
the workflow of QRLogin and then uncovers six types of
unique flaws across the lifecycle of QRLogin.

• We perform a thorough analysis on 109 popular QRLogin
websites in the wild. Our research identifies a total number
of 47 websites that are vulnerable to various attacks in
QRLogin.

• We enhance QRLogin security by providing developers
with an automated auditing tool and offering mitigation
suggestions for developers and users.

2 Understanding Real-world QRLogin

In this research, we start by understanding real-world QR-
Login through two lenses: website deployments and user
perceptions. We collect and confirm 350 websites using QR-
Login from the Tranco top 100K list [24] (as of Nov. 24,
2023) and the results show the prevalence of QRLogin in top
websites and the use in sensitive scenarios. Then, we perform
a user study to understand user perceptions on QRLogin from
the perspective of security.

2.1 QRLogin Deployments in the Wild
In this subsection, we first describe our approach to collecting
QRLogin deployments in the real world and subsequently
present the results.
Collecting Method. We employ a straightforward yet ef-
fective method to collect real-world QRLogin deployments.
The core idea here is to find the presence of “QR Code-based
Login” semantics on website login pages (e.g., the “scan to
login” feature shown in Figure 1). Given the variability in
QRLogin implementations, we use a best-effort strategy to au-
tomatically collect as many candidates as possible, and leave
potential false positives for further manual confirmation.

Given a domain name, we employ the following four key
steps to identify and confirm whether it is indeed with the
QRLogin feature: 1) Identifying the login page by search-
ing for login-related semantics within HTML elements and
navigating to the relevant pages, including enhancements for
diverse login page structures; 2) Detecting QR code semantics
through keyword-based heuristics, excluding instances where
QR codes are used for non-login purposes like resource down-
loading; 3) Finding the QRLogin app by analyzing prompts
or links on the login page and conducting supplementary

www.cnvd.org.cn
www.nvdb.org.cn

searches in app markets; 4) Manually confirming the col-
lected QRLogin websites by having two researchers inde-
pendently verify the presence and functionality of QRLogin,
cross-checking their findings to ensure data accuracy. We
implement the approach based on Playwright browser au-
tomation tool [34], and process the various languages using
the googletrans Python module [39]. We describe more de-
tails about this data collection process in Appendix A.

Table 1: The result of QRLogin deployments collection.
Initial Candidates Confirmed Websites

Websites 611 350

Results. We use the above process to analyze the Tranco
top 100K list [24] (as of Nov. 24, 2023). Overall, our ap-
proach finally identifies 350 websites using QRLogin. More
specifically, as shown in Table 1, we first automatically collect
611 QRLogin website candidates through the first three steps.
Then, our further manual verification confirms that 350 of
them indeed implement QRLogin.

We further analyze the false positives and negatives in the
automatic QRLogin website collection. False positives mainly
stem from distracting content on the page, such as prompts to
scan for presales consulting, descriptive text about QR codes
unrelated to QRLogin, or websites offering related services
like QR-code generators. These false positives can be filtered
out through subsequent manual confirmation. False negatives,
on the other hand, occur when websites require complex nav-
igation paths to the QRLogin page, such as clicking on app
icons without explicit textual guidance. While this limitation
is common to dynamic testing crawlers, improving crawler
coverage is considered as orthogonal to our work.
Prevalence and Categories of QRLogin Websites. As
shown in the upper part of Figure 2, higher-ranked websites
in Tranco are more likely to adopt QRLogin compared to
lower-ranked ones. Notably, the QRLogin websites ranked
in the top 30K account for over half (55%) of the total num-
ber of QRLogin websites. Besides, our analysis shows that
these 350 QRLogin websites span 51 categories out of the
90 total categories featured in Sitereview [4], indicating a
broad diversity of website types employing this authentica-
tion method. The lower part of Figure 2 shows the top 15
categories of QRLogin websites. As can be seen, these cat-
egories primarily consist of websites with sensitive security
requirements, thereby highlighting the importance of secure
QRLogin implementations.

2.2 User Perceptions on QRLogin Security

In the meantime, we conduct a user study that investigates var-
ious aspects of QRLogin usage, including their engagement,
understanding of potential risks, and their behavior when us-

10000 20000 30000 40000 50000 60000 70000 80000 90000 1000000
10
20
30
40
50
60
70
80
90

100

w

eb
si

te
s

Ranking distribution of QRLogin websites.

Te
ch

no
lo

gy
Bu

sin
es

s
Se

ar
ch

 E
ng

in
es

Sh
op

pi
ng

En
ter

tai
nm

en
t

Br
ok

er
ag

e
Fi

na
nc

e
Ga

m
es

Go
ve

rn
m

en
t

Ed
uc

ati
on

Of
fic

e
Tr

av
el

Jo
b S

ea
rc

h
So

cia
l

Su
sp

ici
ou

s0

20

40

60

w

eb
si

te
s

Top 15 categories of QRLogin websites.

Figure 2: The ranking distribution and top 15 categories of
350 QRLogin websites. Note that in the ranking distribution
figure, the x-axis value of 10,000 marks the number of web-
sites ranked from 1 to 10,000.

ing QRLogin. The findings from this user study provide in-
sights for our security analysis of QRLogin implementations.
Design of the User Study. In this study, we aim to answer
the following research questions:
• RQ1: How do users engage with QRLogin?
• RQ2: What is the likelihood of QR code leakage in QR-

Login?
• RQ3: How do users perceive the potential security risks in

QRLogin?
To achieve our goal, we design a questionnaire consisting

of 13 questions, aimed at gathering participants’ responses.
Initially, we present a real-world website example that uses
QRLogin to ensure participants understand the QRLogin con-
cept as discussed in this study. Next, participants are asked to
confirm their prior experience with QRLogin by providing any
websites or apps they have used that offer this functionality,
aside from the example provided. If a participant provides an
invalid response (i.e., the website does not support QRLogin),
the participant will not be considered qualified. Following this,
the rest participants will be asked to answer seven questions
related to our research inquiries. Finally, we collect demo-
graphic information, including age, gender, education, and
occupation, while ensuring the anonymity and privacy of all
participants. The complete questionnaire, recruitment process,
and demographic details are provided in Appendix B.
Results and Findings. The user study successfully obtained
180 valid reports from 180 individuals. The details on how

we design and conduct the user study, as well as the detailed
result analysis are shown in Appendix B. Through this user
study, we come up with the following key observations:
• Users frequently engage in QRLogin in daily activities, and

the categories of used websites are relatively sensitive. In
our survey, 39.44% of all participants use QRLogin every
day, and the categories of used QRLogin websites include
social, financial, governmental, etc.

• Many users face the risk of QR code leakage when using
QRLogin. Specifically, 41.67% of all participants never
or only occasionally took measures to prevent others from
obtaining their QR codes. Moreover, 12.78% of them even
believed it reasonable to provide their QR codes to others
when they are requested, while 72.78% were uncertain.

• QRLogin users have insufficient understanding and aware-
ness of its associated risks. Specifically, among the col-
lected responses, only 15.00% of all participants correctly
identified the risk of QR code leakage.
In summary, our findings underscore the critical role QR-

Login plays in users’ daily lives. More importantly, there
exists a concerning gap in users’ security awareness, proba-
bly leading to behaviors that expose them to potential threats
like QR code leakage. These insights inspire our further secu-
rity analysis, particularly in exploring the threat model where
attackers can gain access to the victim’s QR code.

3 Analyzing QRLogin Security

In this section, we analyze QRLogin security by first dis-
cussing the assumptions and threat model considered in this
study. Then, we demystify the QRLogin workflow and pin-
point the security-critical variables in QRLogin to assess its
compliance with security principles. Based on the analysis,
we finally summarize six security flaws within the QRLogin
workflow.

3.1 Threat Model and Analysis Procedure

Threat Model. To systematically analyze the security of
QRLogin, we begin by defining the security assumptions and
attacker capabilities based on our understanding on real-world
QRLogin deployments.
• Assumptions on channels. We assume that all communica-

tion channels between the victim’s browser, the victim’s
app, and the server are secure, and attackers cannot control
any devices of the victim or the server.

• Assumptions on users. Our research concentrates on vulner-
abilities caused by the QRLogin mechanism itself. In other
words, we do not assume the QR code scanned by the user
can be manipulated by the attacker (e.g., the QRLjacking
attack [2] supplemented by phishing strategies).
On the other hand, our research considers the attacker who

can obtain one of the following types of information:

• The victim’s QR code. The QR code can be obtained
through various methods, such as shoulder surfing [15],
and social engineering to deceive the victim into sending
the QR code to the attackers. The feasibility of this scenario
is also confirmed by our previous user study (i.e., RQ2 and
RQ3), as most normal users do not consider information
about QR codes as sensitive data.

• The victim’s QR code id. As one of the authentication
factors in the QRLogin scheme, in most cases, the victim’s
QR id can be obtained from the QR code. Besides, even
without the victim’s QR code, it is also possible to brute-
force the identifier of the QR code with weak randomness.

• The victim’s identifiers used for account login. These iden-
tifiers may include the user’s phone number and email
address, which can be relatively easy to obtain given the
widespread prevalence of information leaks. Besides, the
user identifier can also be obtained via social engineering,
which has been well studied by prior research [23].

Analysis Procedure. As the starting point, the entire process
of demystifying the workflow of QRLogin primarily involves
manual investigation. The analysis is based on a dataset of
153 QRLogin websites selected from those identified in §2.1.
These websites are chosen from a total of 51 categories, with
the top 3 websites from each category selected to ensure a
diverse and representative sample. For each website, we first
execute the complete QRLogin process and summarize the
key entities involved in the workflow while capturing all net-
work traffic exchanged between the browser, app, and server.
Next, we observe and analyze the entire sequence of inter-
actions between these entities based on the captured traffic.
Finally, we examine the relevant fields in the requests and
responses to identify their roles in the workflow. In cases
where the role of certain fields is unclear, we perform con-
trolled modifications to the traffic, such as altering request
parameters and replaying the traffic to observe how the sys-
tem responds. Through this iterative process, we can identify
consistent patterns and reconstruct the typical sequence of
interactions and the data involved in QRLogin. This approach
allows us to gain a comprehensive understanding of how QR-
Login functions across different websites.

Note that, given the heterogeneous implementations of
QRLogin, such a process of manual investigation is manda-
tory and meaningful. As we will further show in §4, the pro-
cess of understanding the QRLogin process leads to a semi-
automated pipeline, allowing us to more efficiently discover
75 flaw instances in QRLogin deployments. In the meantime,
the manual analysis further leads to an end-to-end auditing
tool, named QRLChecker (see §5.1), for website developers
to inspect their QRLogin implementations.

Polling

QR Status :

User Mobile App ServerBrowser

① Start QRLogin
③ Generate QrId,
 bound with sessionId

P1. QR
Code

Generation
⑤ Show QR code

P2. QR
Code

Scanning

⑥ Start QRLogin app

P3. Login
Confirmation

④ QrId, sessionId

⑩ Bind user and QrId

⑬ Confirm login

⑮ Generate pc_token

⑪ Polling (QrId, sessionId)

⑯ Polling (QrId, sessionId)

⑫ Scanned

⑰ Confirmed (pc_token)

⑱ Post-login activities (pc_token)

⑲ OK

⑧ QrId

⑦ Scan QR code

② Request QRLogin

QR Status :

QR Status :

⑨ Scanned (app_token, QrId)

⑭ Confirmed (app_token, QrId)

Figure 3: The abstracted workflow of QRLogin.

3.2 QRLogin Workflow

Figure 3 summarizes a generic workflow of the QRLogin
scheme. It typically contains three main phases: QR Code
Generation, QR Code Scanning, and Login Confirmation. We
describe the details below.

P1. QR Code Generation. To begin with, when the user
starts a QRLogin process on their browser, the browser will
send a QR code generation request () to the server. Then,
the server will generate and remember a QrId for this request
(step 3), and send it back to the client browser, which will
subsequently show a QR code encoding the QrId to the user.
The server will maintain the status of the QrId, which at
this phase is UNSCANNED. Furthermore, it is important for the
server to bind the QrId with the request session, to distinguish
this request from others.

P2. QR Code Scanning. The second phase is to link the
user with the QR code to set up for later login authorization.
In this phase, the user scans the QR code displayed on the
browser using their authenticated mobile app, allowing the
app to obtain the transmitted QrId by parsing the QR code.
Subsequently, the app automatically sends a request to the
server containing both the QrId and app_token, indicating that
the user has scanned the corresponding QR code (step 9). The
server, informed of the user’s identity by the app_token sent
from the app, binds the user account to the received QrId and
updates the status of the corresponding QR code to SCANNED.

Starting from the beginning of this phase, the browser will
engage in continuous and periodic polling () of the server
to retrieve the authorization status of the QRLogin.

P3. Login Confirmation. This phase is to ensure explicit
user authorization via the mobile app. After scanning the QR
code, the app prompts the user to opt for whether to authorize
the website login request. Only upon the user’s confirmation
will the website successfully log in to the account. Specifi-
cally, after the user confirms authorization, the app sends a
request to the server indicating the login confirmation (,
step 14). Then, the server generates a login token (pc_token)
and updates the QR code status to LOGGED-IN, thereby autho-
rizing the login. The polling request from the browser will
obtain the pc_token and finish the website login process.

In real-world scenarios, some QRLogin implementations
may exhibit minimal deviations from the generic workflow.
In our analysis, we encountered two main types of variations:
1) Workflow variations, which refer to differences in the ex-
ecution of specific phases, such as merging phases P2 and
P3 or directly omit phase P3, bypassing explicit user con-
firmation; 2) Data variations, which involve differences in
data generation and usage, such as generating QrId on the
client side instead of server-side or sending the app_token
only in step 14 . While these deviations occur in some rare
cases, they do not affect the overall workflow structure, as the
core phases and interactions remain consistent. As a result,
these variations do not impact the validity of our analysis.

Table 2: Summarized flaws with concerned key variables.
Phase Flaw Key Variable Steps Related Attack*

P1. QR Code Generation

F1. Unbound SessionId sessionId 3 11 16 Authorization Hijacking, Double Login, Brute-force Login

F2. Reusable QrId
QR code

17 Double Login
F3. Predictable QrId 3 Brute-force Login
F4. Controllable QrId 2 3 4 Authorization Hijacking

P2. QR Code Scanning F5. Vulnerable Identity Verification tokens 9 10 14 Universal Account Takeover

P3. Login Confirmation F6. Unintentional Privacy Leakage other data 17 Privacy Abuse
* More details of the attacks are described in §4.3.

3.3 Security-critical Variables in QRLogin

Based on the generic workflow of QRLogin, we proceed
to conduct a systematic security analysis to identify poten-
tial flaws. To ensure a comprehensive analysis, we focus
on security-critical variables involved in the QRLogin pro-
cess, including the session identifier (sessionId for short),
the QR code identifier (QrId), and the authentication tokens
(app_token and pc_token). These variables are fundamental
to the security of the authentication session.

Our analysis of these variables is guided by core security
principles under our established threat model. Specifically,
we examine each variable for confidentiality (can it be leaked
or guessed?), integrity (can it be tampered with?), and con-
sistency (is it maintained consistently across all phases of the
workflow?). This systematic approach allows us to thoroughly
evaluate the robustness of QRLogin mechanisms and uncover
vulnerabilities. The detailed analysis goes as follows:

• SessionId is the identifier of the communication session
between the victim’s browser and the server. This variable
cannot be leaked and tampered with under our threat model.
However, if the server fails to consistently bind the ses-
sionId with the corresponding QrId (step 3), it may give
the attacker a chance to bind other unauthorized sessionIds
with the authorized QrId. This breaks the consistency of
the sessionId by allowing it to be replaced.

• QrId is the identifier of the QR code scanned by the mobile
app. Under our threat model, it is possible for the QrId
to be compromised and leaked to attackers, for example,
by means of shoulder surfing, where attackers visually
capture the QR code as it is being scanned by the victim.
In addition, if the QrId is generated too simply, attackers
might also be able to guess its value. Furthermore, if the
server fails to properly manage the status of the QrId, for
example, a QrId already authenticated can be re-scanned,
which may allow the attackers to reuse the QrId.

• Tokens, including app_token and pc_token, are used to
identify the user among the mobile app, the browser, and
the server. Under our threat model, it is assumed that these
tokens cannot be leaked or tampered with. However, a
potential risk arises when these tokens are misused, leading
to privilege confusion.

By examining the security-critical variables within the QR-
Login workflow according to the core security principles, we
systematically analyze the potential flaws that may exist in
QRLogin implementations.

3.4 Common Flaws in QRLogin
Building on the analysis of security-critical variables, we
examine real-world QRLogin deployments and have summa-
rized six common implementation flaws. These flaws, along
with the vulnerable key variables, the steps, and the phases
of QRLogin in which they occur, are summarized in Table 2.
We discuss the details of each flaw below.
Flaw-1: Unbound SessionId. In the QRLogin process, mul-
tiple users often simultaneously poll the server to obtain the
latest status of their QR codes. The server determines which
QR code status to return based on the QrId attached to the
polling request. Once the QR code status is LOGGED-IN, sub-
sequent polling requests for this QR code can lead to direct
login into the corresponding account. Thus, the server needs
to confirm if the polling request is from the legitimate user,
i.e., the user who initiated the QRLogin.

Therefore, binding the sessionId, a natural identifier of the
QRLogin session, to the QrId used in this session during
its generation by the server is essential. During subsequent
polling request processing, the server should reject polling
requests that do not have the sessionId bound to the corre-
sponding QrId to identify legitimate users. However, a secu-
rity flaw arises if the server fails to correctly bind the QrId
and sessionId, failing to distinguish legitimate users.
Flaw-2: Reusable QrId. As depicted in Figure 3, the QR
code’s status is continuously managed and updated by the
server throughout the entire QRLogin process. It is essen-
tial for the server to invalidate the authorized status of the
QR code immediately after the completion of a QRLogin
session to prevent the reuse of the same QR code for authenti-
cation. However, a security flaw exists when the QR code’s
residual status is left unaddressed after the completion of the
QRLogin, potentially allowing the QR code to be reused for
unauthorized access.
Flaw-3: Predictable QrId. Due to the lack of uniform stan-
dards or guidance about the security implementation of QR-

Login, different developers may adopt different formats for
QrId. Some developers may generate QrIds with weak ran-
domness. This inadequate entropy makes the QrIds suscepti-
ble to prediction or brute-force attacks. Attackers exploiting
this flaw can potentially know the value of QrId without need-
ing to obtain the QR code directly, merely by predicting its
value based on observable patterns or by systematically trying
combinations in a brute-force manner.
Flaw-4: Controllable QrId. This flaw arises when the QrId
is generated on the client side rather than securely by the
server. In such scenarios, the responsibility of generating the
QrId falls to the browser, which then transmits this identifier
to the server for authentication and session management. This
practice makes the QrId user-controllable, implying that the
attackers can set their QrId to any value (as long as it meets
basic format requirements) to deceive the server.
Flaw-5: Vulnerable Identity Verification. During QRLogin,
the mobile app is required to send user credentials such as
app_token to the server to authorize the website login re-
quest. However, the server may inadequately validate the
app_token. For example, the app may send some other user
identifiers such as a phone number along with the app_token
in the request, but the server fails to verify the correspondence
between the user identifiers and app_token, and directly au-
thorizes the website login according to the provided user
identifier. This flaw may allow attackers to tamper with the
user identifier to bypass the authentication.
Flaw-6: Unintentional Privacy Leakage. In various spe-
cific implementations of QRLogin, sensitive user data may be
embedded in the traffic between the browser and the server,
which may lead to unintentional privacy data leakage. Specif-
ically, some servers treat QRLogin as an alternative to pass-
words. When QRLogin is completed, the server sends the
user’s password back and automatically continues to authen-
ticate using the password. In such scenarios, the leakage of
sensitive data may cause additional security hazards.

The above flaws are identified based on our in-depth under-
standing of the QRLogin workflow and the security analysis
considering how security principles are satisfied by the key
variables, as well as our manual investigation of real-world
QRLogin cases. In the following subsection, we will trans-
form such human knowledge into a pipeline to analyze, and
identify security issues of real-world QRLogin deployments.

4 Security Issues in the Wild

In this section, we use a semi-automated detection pipeline
to investigate the real-world impact of the proposed security
flaws based on our understanding of the QRLogin process. We
then present how these flaws manifest in practice by detailing
typical attack scenarios and providing real vulnerable cases.
Our analysis reveals that a number of websites are vulnerable
to these attacks. One such attack involves an attacker who, by

obtaining the victim’s QR code, can hijack and take over the
victim’s account. Another serious attack demonstrates that
even with just the user’s identifier, such as a phone number,
an attacker can exploit the vulnerability in QRLogin imple-
mentations to gain unauthorized access to the user’s account.
These findings underscore the critical security risks present
in current QRLogin deployments.

4.1 Detection Pipeline
To investigate the impact of these six flaws in the real world,
we design a semi-automated pipeline to help detect the QR-
Login implementations of websites. As shown in Figure 4,
this pipeline includes four steps. First, it collects the traffic
generated while the human tester completes the QRLogin
process. Next, it tries to locate the key components of the
QRLogin implementation, such as QrId, based on the col-
lected traffic. Third, it conducts dynamic testing using these
key components. Finally, the reported vulnerabilities are con-
firmed with the assistance of the human tester.

1) Traffic collection. We collect traffic between the browser
and server, as well as between the QRLogin app and server,
while a human tester performs QRLogin. This step is imple-
mented using mitmproxy [12] to capture on the specific port
while the human tester is completing QRLogin on the browser
initiated by Selenium [3], confirming that the collected traffic
is all generated by the QRLogin process.

2) Key component location. Based on the QRLogin traffic,
we then need to identify the key components of QRLogin,
including QrId, , , . These components form
the backbone of the QRLogin workflow, and identifying them
is a prerequisite for detecting flaws.

However, identifying key components in QRLogin imple-
mentations is challenging due to significant variations across
websites, such as differing QrId field names and values, and
the lack of uniform patterns in URLs for polling requests. To
solve this challenge, we leverage the fact that QrId serves as
a bridge connecting the QRLogin website, app, and server,
and appears in all three requests. This observation allows us
to use QrId as a pivot for locating other components. We be-
gin by identifying QrId through decoding the QR code used
in QRLogin and comparing the decoded contents with the
request fields in the collected traffic. Then, we use QrId to
locate three types of requests by searching for the value of
QrId in the collected traffic.

Specifically, we parse the contents of QR codes by develop-
ing a universal parser that handles various formats like JSON
and further filter out unrelated values like timestamps. When
comparing the common field in the QR code and requests cap-
tured during QRLogin to identify QrId, we sort these requests
based on URL frequencies and start from the most frequent
one to compare. This is inspired by the fact that Reqpoll ex-
hibits a notably high frequency and periodic nature due to
websites requiring constant updates on the user’s scanning

Key Components

Dynamic
Testing• QrId

• Reqgen
• Reqpoll
• Reqauth

Rules

Historic
Data

3. Rule-based Dynamic Testing1. Traffic Collection

Login
Success

Browser ⇔ Server App ⇔ Server

Human
Tester

4. Manual confirmation

Vulnerabilities

ConfirmReported
Flaws

QR Code

Traffic

2. Key Component Location

QrId

Figure 4: The semi-automated pipeline of analysis.

status. The tool will report the matched value and request
as QrId and Reqpoll . Then, searching the first occurrence of
QrId in the network traffic can locate Reqgen, and the app’s
requests containing QrId are classified as Reqauth.

3) Rule-based dynamic testing. Based on the identified key
components, the pipeline proceeds to detect flaws according
to the predefined rules listed in Table 3. This process involves
two main steps: setting up the premises and assessing the de-
tection conditions in the rules. First, we need to obtain valid
values of key variables, such as QrId and sessionId, which
are essential for testing. However, due to the varying request
formats and parameter requirements across websites, gener-
ating valid values that meet all site-specific requirements is
challenging. To address this, we dynamically acquire valid
values by learning from the collected historical traffic to sim-
ulate specific user requests. Specifically, we can acquire a
new valid QrId value by replaying the QR code generation
request (Reqgen) and parsing its response. Likewise, a valid
sessionId is retrieved by identifying and replaying the request
that initially sets the cookie containing the sessionId, thus
obtaining a fresh one for testing.

Subsequently, to assess the rule conditions, we need to eval-
uate the responses with different statuses, such as UNSCANNED
and LOGGED-IN. We adopt an approach to comparing them
with the corresponding historical response with the specific
status. Specifically, we first filter the random field values in
the evaluated responses, including trace ID (used for tracking),
timestamp, and packet signature, and then conduct a compar-
ison. This approach helps distinguish responses of different
statuses with high similarity on the same website and across
different websites with varying response formats.

Specifically, the dynamic testing implementation involves
parsing request and response fields, focusing on URLs, head-
ers, and content where QrId might appear. Response contents
are parsed based on the Content-Type header, with special
handling for base64-encoded data. Additionally, since QrId
may have different names across request types like Reqpoll
and Reqgen, we record these variations to accurately identify
QrId. If client-generated QR codes are detected, we construct
a new valid QrId by modifying a character in the original
QrId and sending it to the server.

4) Manual confirmation. After the semi-automated tool
reports flaws, we further perform manual confirmation to

ensure the exploitability of the detected vulnerabilities.

4.2 Overall Results
We apply the above detection pipeline on the identified 350
QRLogin websites to uncover instances of the six flaws we
proposed. To begin with, our analysis notices that part of
the identified websites adopt identical QRLogin implementa-
tions. For example, those websites from the same company,
or websites using the same third-party login apps. To avoid
redundant analysis and results, we perform additional dedu-
plication based on the QRLogin apps integrated by these
websites. Finally, our research obtains a total number of 181
unique QRLogin implementations adopted by these 350 web-
sites. Among them, 109 unique deployments are found to be
testable. The overall results are shown in Figure 5.

No
 fl

aw
 ex

ist
s

Fl
aw

-1

Fl
aw

-2

Fl
aw

-3

Fl
aw

-4

Fl
aw

-5

Fl
aw

-6
Un

ab
le

to
 te

st
Un

ab
le

to
 ha

nd
le

0

20

40

60

w

eb
si

te
s

62

37

19

3 2 2

12

55

17

Figure 5: Distribution of the detected flaws in various web-
sites.

Detected Flaws. Among the 109 testable websites, we find
47 (43%) websites with a total of 75 flaws in their QRLogin
implementations. Note that one website may have multiple
flaws. These websites with flaws span various sensitive cate-
gories, such as “Technology/Internet”, “Business/Economy”,
and “Financial”. Besides, nearly half of the flawed websites
are ranked within the top thousands, indicating that QRLogin
flaws are prevalent across a wide spectrum of websites with
significant risks. As for specific flaws, the results show that

Table 3: Rules for detecting flaws in QRLogin. sid: sessionId; Req(sid,qrid): request including qrid under session sid;
Authed(qrid): whether qrid has been authorized by a legitimate user; Resp(sid,qrid): return the status of response for re-
quest including qrid under sid; IsDigits(qrid): whether qrid consists solely of numeric digits; GetFields(Req): return set of
fields in the request.

Flaw Premise Rule Condition

F1. Unbound sessionId sid1 ̸= sid2, qrid1 ̸= qrid2, Req(sid1,qrid1),
Req(sid2,qrid2), ¬Authed(qrid1), ¬Authed(qrid2)

Resp(sid2,qrid1) = UNSCANNED

F2. Reusable QR code sid1 ̸= sid2, qrid1 ̸= qrid2, Req(sid1,qrid1),
Req(sid2,qrid2), Authed(qrid1), ¬Authed(qrid2)

Resp(sid2,qrid1) = LOGGED-IN

F3. Predictable QrId Req(sid,qrid) Len(qrid)≤ 6∧ IsDigits(qrid)

F4. Controllable QrId Req(sid,qrid) qrid ∈ GetFields(Reqgen)

F5. Vulnerable Identity Verification A = GetFields(Reqauth) ∃a ∈ A,a ∈ PII

F6. Unintentional Privacy Leakage ∃resp,A = GetFields(resp) ∃a ∈ A,a ∈ PII

Flaw-1 is relatively pervasive (34%). This suggests that web-
sites often overlook the verification of the requester when
implementing QRLogin, resulting in potential risks.

As for the 72 untestable websites, 55 of them have specific
account creation requirements, such as needing a particular
country’s phone number or social ID, which makes testing
infeasible. Additionally, 17 websites employ complex en-
cryption techniques or specialized mechanisms, such as long
connections or the use of cookies and other data for polling in-
stead of the QrId, which deviates from the common QRLogin
implementations we analyze.

We further analyze the false positives reported in the de-
tection pipeline before manual confirmation, identifying 87
reported flaws, of which 12 are false positives across 7 web-
sites. These false positives primarily stem from the additional
website protections. Specifically, some websites may include
and check special fields attached to certain custom requests,
like device information. The detection pipeline reports flaws
when polling request responses indicate a successful login, but
manual verification reveals that the login is blocked later due
to extra protection checks. For false negatives, we manually
verify the websites that are detected without flaws and find 5
cases. Further analysis discovers that the reasons include the
limitations and failed decoding of current QR code decoding
tool. As these 5 cases are not detected by the tool, they are not
included in the detection results listed above. Nevertheless,
we have responsibly reported these vulnerabilities to their
vendors.

4.3 Typical Attacks & Case Studies

In this subsection, we demonstrate 5 typical types of attacks
caused by the identified flaws, including ① Authorization Hi-
jacking, ② Double Login, ③ Brute-force Login, ④ Universal
Account Takeover, and ⑤ Privacy Abuse.

The overview of all attack types and their contributing

Table 4: Overview of attack types and contributing flaws.
No. Attack Concerned Flaws # Websites

1 Authorization Hijacking F1 | F4 37
2 Double Login F1 & F2 17
3 Brute-force Login F1 & F3 1
4 Universal Account Takeover F5 2
5 Privacy Abuse F6* 7
* Please note that the prerequisite for Attack 5 is successful login through

any one of Attacks 1 to 3, followed by the addition of Flaw-6.

flaws is shown in Table 4. We also list the number of QR-
Login websites vulnerable to each attack. Overall, many web-
sites are confirmed vulnerable to these attacks, implying the
widespread insecurity of QRLogin in real-world deployments.
These attacks can lead to severe consequences such as ac-
count takeover, privacy violation, and even financial loss. We
discuss the details of each type of attack below, along with
some real-world case studies to better illustrate the attack
process and consequence.

Attack-1: Authorization Hijacking. When a QRLogin web-
site exhibits Flaw-1, it is vulnerable to authorization hijacking
attacks. This attack is illustrated in Figure 6, which works as
follows: 1) The victim starts the QRLogin process by sending
Reqgen and receives a QR code containing a QrId; 2) The
attacker steals the victim’s QrId through methods like shoul-
der surfing or social engineering, and waits for the victim to
authorize; 3) After the victim normally authorizes on the app
(sending Reqauth), the attacker promptly races to send Reqpoll
with the victim’s QrId to the server. Note that the attacker
can poll at a higher frequency to hijack the victim’s autho-
rization within the attack time window marked as the red area
in Figure 6. Since the server does not bind the QrId with the
specific request session, the attack can successfully login to
the victim’s account before the victim does.

Additionally, Flaw-4 also allows attackers to launch au-

ServerVictim

 Fail to bind QrId with sessionId

QR Status :

Attacker

Attacker steals victim's QrId

QR Status :

QrId
Wait victim
to scan
QR code

QrId

Time window
for the attack

Flaw-1

QrId

QrId

QrId, sessionId

Figure 6: Authorization hijacking attack.

thorization hijacking attacks. Specifically, since QrId is lo-
cally generated by the client, even if the server first binds
the victim’s QrId with their sessionId, attackers can still
have a chance of re-binding. This is implemented by sending
Reqgen with the victim’s QrId, thereby re-binding it with the
attacker’s own sessionId. Then, attackers can achieve the au-
thorization hijacking attack if their Reqpoll reaches the server
within the attack time window.

As for the practicality of Attack-1, attackers have ample
opportunity to launch the attack given that users typically take
several seconds to open the mobile app, scan, and confirm
login. Moreover, attackers can impersonate the victim to poll
at a higher frequency than the victim to race. Specifically,
websites normally poll at second-level intervals, whereas an
attacker can use millisecond-level intervals to effectively fa-
cilitate a successful attack.

Case-1: Taobao (taobao.com). Taobao is a leading shop-
ping platform with nearly 500 million users4, which exists
Flaw-1 and is vulnerable to authorization hijacking attacks.
By exploiting this attack, the attacker can log into the vic-
tim’s Taobao account on the website without authorization,
thereby compromising sensitive information such as purchase
history, browsing records, sensitive shipping address, phone
number, as well as the recipient’s information. We have re-
ported this vulnerability to NVDB and received an NVDB ID
as NVDB-CAPPVD-2024143978.
Attack-2: Double Login. When a QRLogin website exhibits
both Flaw-1 and Flaw-2, it is vulnerable to double login at-
tacks. As shown in Figure 7, the attack workflow is as follows:
1) The victim starts the QRLogin process by sending Reqgen
and receives a QR code containing a QrId; 2) The attacker
steals the victim’s QrId and waits for the victim to authorize;
3) After the victim normally logs into their account, the at-
tacker sends Reqpoll with the victim’s QrId to the server. As
the status of the QrId is reusable (Flaw-2) and it is not bound
with a specific session (Flaw-1), the attacker can also log into

4https://www.taobao.com/about/intro.php

ServerVictim

 Fail to bind QrId with sessionId

QR Status :

Attacker

Attacker steals victim's QrId
QR Status :

QrId
Wait victim
to scan
QR code

QrId

Flaw-1

 Fail to clear logged-in status

Flaw-2

Time window
for the attack

QrId

QrId

QrId, sessionId

Figure 7: Double login attack.

the victim’s account, leading to a double login of the victim’s
account.

In this type of attack, the attacker does not need to race
against the victim. Therefore, this attack has a longer time
window compared to Attack-1, as shown by the red area in
Figure 7. Moreover, this attack does not disrupt the victim’s
normal login process, leaving the victim unaware of the attack.

Case-2: ** (**.ru). **5 is a popular social media platform
in Russia, which has a large number of users and ranks within
the top 500 in the Tranco list. This website suffers from
Flaw-1 and Flaw-2, making it vulnerable to the double login
attacks. Through exploiting the flaws, an attacker can gain
unauthorized access to a victim’s account unnoticed, thereby
monitoring the victim’s social activities and potentially imper-
sonating them to perform malicious actions. We have reported
this issue to the vendor but have yet to receive a response.
Attack-3: Brute-force Login. In the presence of both Flaw-
1 and Flaw-3, a website is vulnerable to brute-force login
attacks. When the QrId is violently enumerable, attackers
can execute brute-force attacks without the need to steal the
QrId from the victim. By systematically traversing possible
QrId values, attackers can collide with any victim’s QrId,
gaining access to their login authorization, as Attack-1 did.
In real-world scenarios, websites usually neglect to check
and limit polling frequency, making such brute-force attacks
feasible. Furthermore, if the website also suffers from Flaw-2,
the chances of a successful attack are even higher. As long as
the brute-forced QrId matches a valid QR code, attackers can
access user accounts illegally.

Case-3: ** (**.com). **5, a global virtual community ser-
vice on the Internet with users from multiple countries such
as the United States and Russia, ranks among the top 500 in
the Tranco list. This website exhibits Flaw-3, making it vul-
nerable to brute-force attacks. Specifically, the QrId used in

5We anonymized the identity as we have not received any response from
vendors yet.

https://www.taobao.com/about/intro.php

its QRLogin consists solely of 6-digit pure numbers. Attack-
ers can exploit this vulnerability by conducting brute-force
enumeration, and upon collision with a victim’s QrId, they
can take control of the victim’s account. We are actively con-
tacting developers to facilitate the fix of the vulnerability.
Attack-4: Universal Account Takeover. When a website
exhibits Flaw-5, its QRLogin process becomes vulnerable
to universal account takeover attacks. Attackers only need to
know the victim’s account identifier, such as a phone number
to log into the victim’s account. The specific attack process
is shown in Figure 8. This vulnerability originates from the
server’s failure to verify the app_token in Reqauth but only
checking the account identifier. Consequently, attackers can
take over any victim’s account by simply substituting the
account identifier in Reqauth with that of the victim.

ServerVictim Attacker

Victim's phone_numberFail to verify the
user's identify

Flaw-5

Takeover
victim's
account

QrId

PII
Flaw-6

Figure 8: Universal account takeover attack.

Case-4: ** (**.cn) & ** (**.cn). A Chinese provincial gov-
ernment website and a popular cloud storage service provider
with more than 100 million users are found to exhibit Flaw-5,
making them vulnerable to account takeover attacks. Specifi-
cally, their servers directly authorize the login for the account
linked to the phone number in Reqauth without validating the
app_token. As a result, attackers can log into any victim’s
account using only the victim’s phone number. This allows
attackers to exploit the victim’s government services on the
government website, and illegally access private files stored
on the cloud service website. We have reported these vulnera-
bilities and received a formal thanks letter from the govern-
ment and an NVDB ID as NVDB-CAPPVD-2024672890,
respectively.
Attack-5: Privacy Abuse. When a QRLogin website exhibits
Flaw-6, it is potentially vulnerable to privacy abuse attacks,
where attackers can acquire the victim’s highly sensitive in-
formation such as passwords from the server’s responses.
Furthermore, these data can be abused by attackers to cause
more harm. Note that to conduct such attacks, attackers have
to first complete any one of Attack-1, Attack-2, or Attack-3.

Case-5: Chinese National Digital Library (nlc.cn). This is
one of the largest library management platforms in China.

However, this platform suffers from Flaw-1, Flaw-2, and
Flaw-6, making it vulnerable to privacy abuse attacks. Once
the attacker compromises the QRLogin of the website, they
can obtain the victim’s username and password in plaintext
from the server’s responses, thus gaining full control over the
account. More seriously, considering that people often reuse
passwords across different platforms [38], this vulnerability
allows attackers to potentially compromise the victim’s other
accounts through credential stuffing [36]. We further explore
why the website returns passwords and discover that the web-
site uses QRLogin as a pre-step to password login, using the
returned password to automatically complete the password
login process. We have reported this vulnerability to NVDB
and received an NVDB ID as NVDB-CAPPVD-2024678490.

4.4 Responsible Disclosure
We have responsibly disclosed the identified flaws and vulner-
abilities to the respective vendors, providing comprehensive
details, including descriptions of the vulnerabilities, proof of
concept (POC) scripts, and other supporting documents to
facilitate their understanding and mitigation efforts. At the
time of this paper’s submission, we have received acknowl-
edgments in the form of 17 CNVD IDs and 25 NVDB IDs.
Notably, there is no overlap between the vulnerabilities that
obtained CNVD and NVDB IDs.

While some vendors have either not yet responded or have
underestimated the risks, we are actively engaged in discus-
sions with them to clarify and address the issues. We hope
that our efforts in responsible disclosure will significantly
contribute to enhancing the security of QRLogin systems in
real-world applications.

5 Enhancing QRLogin Security

To enhance the security of QRLogin, we consider both the
involved stakeholders, i.e., developers and users. For devel-
opers, we present QRLChecker, an automated auditing tool
that evaluates QRLogin implementations and provides tar-
geted measures to fix the existing vulnerabilities. For users,
we provide tailored suggestions to improve their awareness
and safety based on the insights from our user study (§2.2).
This dual focus aims to strengthen QRLogin security from
both technical and user perspectives.

5.1 QRLChecker: A QRLogin Auditing Toolkit
Overview. To enhance the security of real-world QRLogin
implementations, we further propose a dedicated auditing
tool for developers, called QRLChecker, as shown in Figure 9.
This tool is designed to assist developers in assessing the
security of their QRLogin implementations by leveraging
prior knowledge provided by the developers themselves. With
the pre-knowledge, supplied in the form of a configuration

file, QRLChecker can automatically detect and report existing
security vulnerabilities without misidentification of key com-
ponents in QRLogin implementations, while also offering
tailored mitigation suggestions.

Configuration File

QRLChecker

Dynamic
testing

{
 "base": {
 "qrid_name": "QrId",
 "polling_url": "https://xxx",
 "gen_url": "https://xxx",
 "auth_url": "https://xxx"
 },
 "polling_response_format": {
 "indicator": "status",
 "value": {
 "unscanned": "0",
 "scanned": "1",
 "logged-in": "2",
 "invalid": "3"
 }
 }
}

Input Output

Existing Flaws
Flaw-1. Unbound SessionId

Mitigation Measure
1. Bind sessionId & QrId when
generation;
2. Check the correspondence
between the two variable when
polling.

Report

Figure 9: Overview of QRLChecker.

Developer Input. When using QRLChecker to audit a QR-
Login deployment, developers are required first to provide a
configuration file that serves as essential pre-knowledge for
the tool. This configuration file is a JSON file containing key
components of the QRLogin implementation. Specifically,
the file should include: 1) the name of the field that holds the
QrId in the requests and responses; 2) the URLs correspond-
ing to the three types of requests (, ,); and 3)
the responses format of the polling request, particularly the
variable name indicating the status of the QRLogin process
and corresponding values that represent different states, such
as UNSCANNED, LOGGED-IN. By providing this detailed con-
figuration, developers equip QRLChecker with the necessary
context to accurately analyze the security of the QRLogin
implementation.
QRLChecker Output. Given the input configuration file,
QRLChecker generates a comprehensive report that includes
two primary sections. The first section identifies and details
the security flaws present in the audited QRLogin implemen-
tation, outlining the specific vulnerabilities and their potential
impacts on the authentication process. The second section
offers targeted mitigation methods and recommendations for
each identified flaw, providing developers with clear, action-
able steps to address the vulnerabilities effectively and en-
hance the overall security of their QRLogin implementations.
Detailed Running Process. In an auditing process,
QRLChecker starts by reading the developer-provided config-
uration file to gather the necessary information for the audit.
It then launches an automated testing process by opening a
browser to access the target website, where the developer is
required to complete a QRLogin process like a normal user to
allow the tool to capture the required traffic. Using the config-
uration details, QRLChecker identifies the relevant requests
and fields in the captured traffic. It then conducts dynamic
testing by modifying and replaying requests based on prede-
fined rules (listed in Table 3). The results are compiled into
a report that summarizes the identified vulnerabilities and

offers practical measures to fix them, helping the developer
improve the security of their QRLogin implementations.

This approach allows for more precise and relevant security
assessments by incorporating site-specific knowledge into the
detection process. As a result, QRLChecker enhances the
accuracy of vulnerability detection and provides developers
with actionable insights to strengthen the security of their
QRLogin implementations, ultimately contributing to safer
real-world QRLogin deployments.

In terms of the difference between our detection pipeline
(§4.1) and QRLChecker, they serve distinct purposes with dif-
ferent workflows. The pipeline is to assist our human testers
in identifying potential security flaws across a variety of QR-
Login websites. It operates at scale, automatically detecting
key components, which requires further human verification
to confirm accuracy. In contrast, QRLChecker is designed for
developers to audit and enhance the security of their QRLogin
implementations. By requiring a configuration file with key
component information as input, QRLChecker can provide
precise auditing results and targeted mitigation advice.

5.2 Suggestions for Developers

In addition to the targeted mitigation measures provided in the
QRLChecker audit reports, we offer best practices throughout
the QRLogin lifecycle for developers to ensure secure QR-
Login implementations. These suggestions serve as a compre-
hensive guide to bolster the security of QRLogin deployments,
ensuring that common vulnerabilities are effectively avoided.
Developers should take responsibility for avoiding security
flaws through the following specific measures:

• Generation of QR code. Developers should delegate the
generation of QrId to the server side using a secure al-
gorithm and lengthy strings of mixed characters to avoid
Flaw-3 and Flaw-4. Moreover, the generated QrId should
be bound with the sessionId of the user’s session, provided
in the request for QR code generation.

• Utilization of QR code. Developers should ensure that
only polling requests from the legitimate user who initiates
the QRLogin are considered valid by verifying the corre-
spondence between the sessionId and QrId in the requests,
to avoid Flaw-1. Besides, developers must promptly clear
LOGGED-IN status of the QR code after the user completes
the QRLogin to avoid Flaw-2.

• Validation of tokens. Developers should carefully issue
valid app_token for authenticated QRLogin apps. When
authorizing QRLogin, developers must verify the validity
of app_token in Reqauth and only authorize the login for
the account linked to that app_token to avoid Flaw-5.

• Protection of sensitive data. Developers should be cautious
to prevent unintentional leakage of sensitive information
in QRLogin responses to avoid Flaw-6. Meanwhile, neces-
sary sensitive information should be transmitted encrypted.

Furthermore, QRLogin should be implemented as an inde-
pendent authentication method to avoid posing additional
threats to other authentication methods like passwords.

5.3 Suggestions for Users
Based on the findings in our user study (§2.2), we provide
suggestions to enhance QRLogin security for users, helping
users better protect their accounts.
• Protecting QR codes actively. Users should take proactive

measures when using QRLogin, such as hiding the QR
codes to protect them from being stolen or captured when
scanning the QR code, to mitigate the attacks caused by
the leakage of QR codes.

• Raising security awareness. Users should be fully aware
of the potential risks in the QRLogin process and avoid
intentionally sharing their QR codes with others.

6 Discussion

Comparison with Existing Protocols. Several existing pro-
tocols, such as RFC 8628 OAuth 2.0 Device Authorization
Grant [13] and OpenID Connect Client-Initiated Backchannel
Authentication Flow (CIBA) [16], address authentication in
similar contexts. QRLogin shares common ground with them
in that they all address authentication scenarios where the de-
vice initiating the authorization differs from the device used
for authorization. However, their scopes and designs diverge
significantly. Specifically, RFC 8628 is designed for input-
constrained devices like printers and TVs, while QRLogin
is primarily used for website authentication. CIBA, in turn,
does not involve direct interactions between two devices as
QRLogin does. Instead, the server communicates the authen-
tication request directly to the user. As a result, the leakage
channels, such as QR codes in QRLogin, do not exist in CIBA.

In our work, all identified websites rely on mobile apps
for authorization and use QR code scanning for direct inter-
actions between two devices, making RFC 8628 and CIBA
protocols inapplicable. These differences further highlight
QRLogin’s unique security concerns. The flaws we identified,
such as Flaw-2 and Flaw-3, are specific to QR code usage.
Nevertheless, the principles underlying these flaws can be gen-
eralized to broader authentication systems, offering insights
that extend beyond QRLogin.

Limitation. This paper adopts a dynamic testing approach
to audit the security of the QRLogin process, thus it may incur
the common shortcomings of dynamic testing. For example,
for the 181 QRLogin websites with unique implementations,
we find a large proportion of them (55) can not be tested due to
certain account registration requirements. Also, when captur-
ing and parsing the network traffic, we encounter the problem
of potential parameter encoding and encryption, which brings
challenges to all dynamic testing approaches [11]. We believe

the advancement of dynamic techniques can further improve
the performance of our proposed method.

Formal methods. When detecting implementation flaws,
we apply a rule-based approach to examine the existence of
certain network traffic patterns. We noticed that formal meth-
ods are widely used to evaluate the security and correctness
of network or authentication protocols. However, the diversity
and complexity of current QRLogin implementations pose
significant challenges to the direct application of formal meth-
ods. Consequently, we advocate for future standardization
efforts in this new scheme to enable more effective use of
formal methods in evaluating QRLogin security.

Manual efforts. In our study, the heterogeneous nature of
websites necessitates manual confirmation of the QRLogin
websites collected by the tool to ensure accuracy. Addition-
ally, the semi-automated detection pipeline requires manual
steps for app preparation, QR code scanning, and vulnerability
confirmation. Such manual efforts are unavoidable, as seen in
similar research on app authentication [20].
Future Work. As an emerging authentication mechanism,
there are multiple aspects worth exploring in the future. One
particularly intriguing and crucial area for subsequent re-
search is the usability or usable security of QRLogin. During
our manual analysis, we found that some websites may over-
look users’ rights of awareness and cancelability during the
QRLogin process. They may directly omit a critical phase
(P3) in the workflow or do not provide an effective mecha-
nism for users to manage the authenticated sessions. These
usability issues may cause users not to be able to correctly
perceive and protect the QRLogin processes. We think this
could be an interesting research target in the future.

Third-party QRLogin. During our research, we observe
that a subset of websites utilize third-party QRLogin mecha-
nisms, employing popular apps such as WeChat to scan QR
codes and authenticate users. This method is more like an
OAuth procedure. Although current analysis has not revealed
any specialized security flaws within these third-party imple-
mentations, the use of QRLogin via third-party apps requires
further investigation to ensure its robustness and security.

7 Related Work

QR Code Security. Previous research on QR codes mainly
focuses on security issues and defense mitigation measures
during the QR code scanning process. Han et al. [19] pro-
posed an attack named Medusa, which exploits vulnerabilities
in QR code parsers to trigger the custom remotely accessible
handlers (RAHs) and gain unauthorized access to the sensi-
tive data within the mobile apps. To enhance the security of
QR codes, various methods have been proposed, including
automated detection of malicious QR codes [22], utilizing fin-
gerprint to identify the display screen used for presenting the
QR code [27], and employing novel QR code systems to pre-

vent scanning by unauthorized individuals [37]. Additionally,
Mavroeidis et al. [33] introduced the Quick Response Code
Secure (QRCS) approach, which employs digital signatures
to verify the authenticity of QR codes, to mitigate the risks of
man-in-the-middle and replay attacks.

In contrast, our research focuses on the security issues
present in the QR code scanning-based login process. The
most related work to ours is QRLJacking [2], wherein at-
tackers subvert the authentication process by replacing the
victim’s QR code with one of their own. This can be achieved
by tricking the victim into scanning a QR code controlled
by attackers. Nonetheless, the success of such operations de-
pends on the victim’s interaction, which may raise suspicions
if not carefully executed. This kind of attack is much more
like a social phishing attack, while in this paper we study
the security of the QRLogin process and the implementation
flaws in the protocol design and implementations.
Authentication Security. The security of authentication
mechanisms is a critical research topic in the security area,
and many authentication methods have been studied [7,17,42,
43, 45]. Traditional password authentication is vulnerable to
guessing attacks, brute-force attacks, and credential stuffing
attacks [8, 32]. Facial recognition can be invaded by trojaned
model provided by attackers [29]. A recent study [44] also
systematically revisits the design and implementation details
of face recognition in mobile apps, finding that their protocol
and workflow suffer from various attacks. As a result, even
with just a few photos of the victim, it is possible to bypass
facial recognition completely.

SMS one-time passwords (OTP) is another widely used au-
thentication scheme, which sends a one-time code to the users
for login. However, SMS OTP may suffer from weak random-
ness issues [31]. Besides, attackers can intercept SMS OTP
through malware [10, 26], SIM card swapping attacks [25],
and wireless network hijacking [21], thus facilitating account
hijacking [18]. By contrast, we investigate the QR code-based
authentication scheme, which is a newly emerging authen-
tication method increasingly adopted by popular websites.
However, this new scheme receives less attention than others.
As far as we know, we are the first to systematically evaluate
the security of QRLogin deployed in practical settings.
Website Login Security. The security of website login mech-
anisms has gained significant attention among researchers.
Some studies have investigated website cookies and identified
various security vulnerabilities, such as the susceptibility of
cookie integrity to compromise [41] and their susceptibility to
hijacking attacks [14]. Additionally, research on website pass-
word managers has identified security issues and provided rec-
ommendations for enhancing existing password management
solutions [28, 30, 35, 40]. Furthermore, through large-scale
analysis of password-based website login implementations,
Al Roomi et al. [9] have revealed insecure login policies ex-
isting in real-world deployments. In our work, we extend the
study of web security to include QR code-based logins and

conduct a systematic investigation. This work on the newly
emerged QRLogin scheme broadens the scope and introduces
new perspectives to the field of web login security research.

8 Conclusion

This paper conducts the first systematic analysis of QRLogin
security in real-world deployments. We first understand the
real-world QRLogin by measuring its deployments and ex-
ploring user perceptions on its security. Based on the findings,
we set up a realistic threat model for QRLogin. We then sum-
marize a typical QRLogin workflow, identify crucial variables,
and assess compliance with security principles, during which
process we uncover six common implementation flaws.

We evaluate 109 QRLogin websites using a semi-
automated pipeline and find that 47 websites possess at least
one security flaw type, posing serious risks like authorization
hijacking and universal account takeover. We have responsi-
bly disclosed these vulnerabilities, resulting in the issuance
of 42 vulnerability IDs. Furthermore, we provide develop-
ers with an auditing tool and give mitigation suggestions for
developers and users to enhance QRLogin security.

Acknowledgments

We would like to thank our shepherd and the anonymous
reviewers for their insightful comments that helped im-
prove the quality of the paper. This work was supported in
part by the National Natural Science Foundation of China
(62102091, 62172104, 62172105, 62472096, 62102093,
62302101, 62402114, 62402116, 62202106), National Key
Research and Development Program (2021YFB3101200).
Min Yang is the corresponding author, and a faculty of Shang-
hai Institute of Intelligent Electronics & Systems, and En-
gineering Research Center of Cyber Security Auditing and
Monitoring, Ministry of Education, China.

Ethics Considerations

During this research, we strictly adhered to USENIX Security
’25 Ethics Guidelines [5], ensuring that no potential harm was
caused to any stakeholders involved. This section discusses
the ethical considerations we addressed throughout our study,
from performing the user study, testing QRLogin websites for
security analysis, to the responsible disclosure of identified
vulnerabilities.
User Study. Our study was approved by the Institutional
Review Board (IRB). In our user study to investigate users’
perceptions of QRLogin security, we collected the partici-
pants’ anonymized background information to analyze and
demonstrate the demographics of this user study. We ensured
that participants were fully informed about the purpose of
data collection, which is only for research, and we obtained

consent for data collection. The data gathered, which was
limited to non-sensitive demographics as outlined in Ques-
tions 10-13 in §B.3, ensures anonymity, making it impossible
to contact or deduce specific individuals from the collected
information.

On the other hand, our questionnaire-based user study only
asked about their habits, methods, and perceptions of using
QRLogin. The survey did not request any confidential account
information or credentials from participants.

Testing Procedures. During our testing, we prioritized ethi-
cal standards to ensure that no harm was caused to the users
and the websites. On the one hand, all tests were exclusively
conducted using our own devices and test accounts, avoiding
any potential risk to other users’ accounts.

To avoid imposing unnecessary burdens on external sys-
tems, our tests were carefully designed and executed to sim-
ulate the typical behavior of regular users. The number of
requests made during testing was strictly controlled within
the normal user request range (i.e., fewer than 10 requests)
to ensure that no excessive traffic or computational load was
placed on any servers, thereby preventing any disruption to
the normal operation of the websites.

Moreover, as for the manual confirmation of the autho-
rization hijacking attack, given it is a kind of race attack,
launching a real attack would require the attacker to send
requests to the server at a high frequency, which may cause
stress on the server. Therefore, we adopted an approach of
blocking the victim tester’s polling requests to confirm the
race condition vulnerability. This approach avoids the impact
on the website servers that would result from simulating the
attack with high-frequency polling requests.

Vulnerability Disclosure. All vulnerabilities identified in
this study were promptly and responsibly reported to the rele-
vant vendors following the specified ethical guidelines, along
with proposed mitigation measures to minimize any potential
risks. For vendors (websites) hosted in China, we reported the
vulnerabilities through official platforms, including CNVD
and CAPPVD, in compliance with the local regulation require-
ments (i.e., China). For vulnerabilities affecting other regions,
we promptly contacted the affected vendors directly to report
the security issues in their QRLogin implementations and
provide practical measures to fix them, preventing potential
exploitation. Note that while we initially attempted to report
the vulnerabilities via the Common Vulnerabilities and Expo-
sures (CVE) platform, the idea seems not to work. According
to CVE’s inclusion criteria, vulnerabilities on specific web-
sites are not assigned CVE IDs (as per INC3 in Inclusion
Decisions [1]). As of our submission, we did not disclose any
information of a specific vendor, if we have not received their
response.

Open Science

We comply with the USENIX Security open science policy
by open-sourcing all research artifacts associated with our
work. The artifacts include:

• Detection Pipeline and Auditing Tool (QRLChecker).
The source code for these tools is open-sourced to vetted
researchers and vendors upon request. This controlled re-
lease addresses ethical concerns, as unrestricted access may
enable attackers to abuse these tools to identify and exploit
potential vulnerabilities in the real world. By carefully vet-
ting those who request access, we take responsibility for
preventing such risks and ensuring that the tools are used
only for legitimate purposes.

• Dataset and Data Collection Scripts. The dataset of
websites we analyzed in this work and the scripts used to
collect QRLogin websites are directly open-sourced.

• User Study Data. The raw data collected from our user
study is publicly available.

The dataset, data collection scripts, and user study data
are directly open-sourced at https://doi.org/10.5281/
zenodo.14676762, while the detection pipeline and audit-
ing tool (QRLChecker) are available through responsible
release at https://doi.org/10.5281/zenodo.14676842,
accessible to vetted researchers upon request.

References

[1] “Cve counting rules cve,” https://cve.mitre.org/cve/list_
rules_and_guidance/counting_rules.html, 2024.

[2] “Qrljacking, an attack introduced on owasp.” https://
owasp.org/www-community/attacks/Qrljacking, 2024.

[3] “Seleniumm, a suite of tools for browser automation.”
https://www.selenium.dev/, 2024.

[4] “Symantec sitereview,” https://sitereview.bluecoat.com/
#/, 2024.

[5] “Usenix security ’25 ethics guidelines,” https:
//www.usenix.org/conference/usenixsecurity25/
ethics-guidelines, 2024.

[6] “Wenjuanxing user study,” https://www.wjx.cn, 2024.

[7] A. Acien, A. Morales, R. Vera-Rodriguez, J. Fierrez, and
R. Tolosana, “Multilock: Mobile active authentication
based on multiple biometric and behavioral patterns,” in
1st International Workshop on Multimodal Understand-
ing and Learning for Embodied Applications, 2019, pp.
53–59.

https://doi.org/10.5281/zenodo.14676762
https://doi.org/10.5281/zenodo.14676762
https://doi.org/10.5281/zenodo.14676842
https://cve.mitre.org/cve/list_rules_and_guidance/counting_rules.html
https://cve.mitre.org/cve/list_rules_and_guidance/counting_rules.html
https://owasp.org/www-community/attacks/Qrljacking
https://owasp.org/www-community/attacks/Qrljacking
https://www.selenium.dev/
https://sitereview.bluecoat.com/#/
https://sitereview.bluecoat.com/#/
https://www.usenix.org/conference/usenixsecurity25/ethics-guidelines
https://www.usenix.org/conference/usenixsecurity25/ethics-guidelines
https://www.usenix.org/conference/usenixsecurity25/ethics-guidelines
https://www.wjx.cn

[8] S. Agrawal, P. Miao, P. Mohassel, and P. Mukherjee,
“Pasta: password-based threshold authentication,” in Pro-
ceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, 2018, pp. 2042–
2059.

[9] S. Al Roomi and F. Li, “A {Large-Scale} measure-
ment of website login policies,” in 32nd USENIX Secu-
rity Symposium (USENIX Security 23), 2023, pp. 2061–
2078.

[10] A. Center, “Additional requirements for the use of spe-
cific permissions,” 2019.

[11] Q. Chen and A. Kapravelos, “Mystique: Uncovering in-
formation leakage from browser extensions,” in Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 1687–1700.

[12] A. Cortesi, “Mitmproxy: a man-in-the-middle proxy.”
https://mitmproxy.org/, 2024.

[13] W. Denniss, J. Bradley, M. B. Jones, and H. Tschofenig,
“OAuth 2.0 Device Authorization Grant,” RFC 8628,
Aug. 2019. [Online]. Available: https://www.rfc-editor.
org/info/rfc8628

[14] K. Drakonakis, S. Ioannidis, and J. Polakis, “The cookie
hunter: Automated black-box auditing for web authen-
tication and authorization flaws,” in Proceedings of the
2020 ACM SIGSAC Conference on Computer and Com-
munications Security, 2020, pp. 1953–1970.

[15] M. Eiband, M. Khamis, E. Von Zezschwitz, H. Huss-
mann, and F. Alt, “Understanding shoulder surfing in
the wild: Stories from users and observers,” in Proceed-
ings of the 2017 CHI Conference on Human Factors in
Computing Systems, 2017, pp. 4254–4265.

[16] G. Fernandez, F. Walter, A. Nennker,
D. Tonge, and B. Campbell, “Openid con-
nect client-initiated backchannel authentica-
tion flow - core 1.0,” https://openid.net/specs/
openid-client-initiated-backchannel-authentication-core-1_
0.html, 2021.

[17] M. A. Ferrag, L. Maglaras, A. Derhab, and H. Jan-
icke, “Authentication schemes for smart mobile devices:
Threat models, countermeasures, and open research is-
sues,” Telecommunication Systems, vol. 73, no. 2, pp.
317–348, 2020.

[18] M. Ghasemisharif, A. Ramesh, S. Checkoway,
C. Kanich, and J. Polakis, “O single Sign-Off,
where art thou? an empirical analysis of single
Sign-On account hijacking and session manage-
ment on the web,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD:

USENIX Association, Aug. 2018, pp. 1475–1492.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/ghasemisharif

[19] X. Han, Y. Zhang, X. Zhang, Z. Chen, M. Wang,
Y. Zhang, S. Ma, Y. Yu, E. Bertino, and J. Li, “Medusa
attack: Exploring security hazards of {In-App}{QR}
code scanning,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 4607–4624.

[20] F. He, Y. Jia, J. Zhao, Y. Fang, J. Wang, M. Feng, P. Liu,
and Y. Zhang, “Maginot line: Assessing a new cross-app
threat to pii-as-factor authentication in chinese mobile
apps–ndss symposium,” in NDDS Symposium, 2024.

[21] W. Jin, X. Ji, R. He, Z. Zhuang, W. Xu, and Y. Tian,
“Sms goes nuclear: Fortifying sms-based mfa in online
account ecosystem,” in 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks Workshops (DSN-W). IEEE, 2021, pp. 7–14.

[22] A. Kharraz, E. Kirda, W. Robertson, D. Balzarotti, and
A. Francillon, “Optical delusions: A study of malicious
qr codes in the wild,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks. IEEE, 2014, pp. 192–203.

[23] K. Krombholz, H. Hobel, M. Huber, and E. Weippl, “Ad-
vanced social engineering attacks,” Journal of Informa-
tion Security and applications, vol. 22, pp. 113–122,
2015.

[24] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob,
M. Korczyński, and W. Joosen, “Tranco: A research-
oriented top sites ranking hardened against manipu-
lation,” in Proceedings of the 26th Annual Network
and Distributed System Security Symposium, ser. NDSS
2019, Feb. 2019.

[25] K. Lee, B. Kaiser, J. Mayer, and A. Narayanan, “An em-
pirical study of wireless carrier authentication for {SIM}
swaps,” in Sixteenth Symposium on Usable Privacy and
Security (SOUPS 2020), 2020, pp. 61–79.

[26] Z. Lei, Y. Nan, Y. Fratantonio, and A. Bianchi, “On the
insecurity of sms one-time password messages against
local attackers in modern mobile devices,” in Network
and Distributed Systems Security (NDSS) Symposium
2021, 2021.

[27] Y. Li, Y.-C. Chen, X. Ji, H. Pan, L. Yang, G. Xue, and
J. Yu, “Screenid: Enhancing qrcode security by finger-
printing screens,” in IEEE INFOCOM 2021-IEEE Con-
ference on Computer Communications. IEEE, 2021,
pp. 1–10.

https://mitmproxy.org/
https://www.rfc-editor.org/info/rfc8628
https://www.rfc-editor.org/info/rfc8628
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://www.usenix.org/conference/usenixsecurity18/presentation/ghasemisharif
https://www.usenix.org/conference/usenixsecurity18/presentation/ghasemisharif

[28] Z. Li, W. He, D. Akhawe, and D. Song, “The
{Emperor’s} new password manager: Security analy-
sis of web-based password managers,” in 23rd USENIX
Security Symposium (USENIX Security 14), 2014, pp.
465–479.

[29] J. Lin, L. Xu, Y. Liu, and X. Zhang, “Composite back-
door attack for deep neural network by mixing exist-
ing benign features,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security, 2020, pp. 113–131.

[30] S. G. Lyastani, M. Schilling, S. Fahl, M. Backes, and
S. Bugiel, “Better managed than memorized? studying
the impact of managers on password strength and reuse,”
in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 203–220.

[31] S. Ma, J. Li, H. Kim, E. Bertino, S. Nepal, D. Ostry,
and C. Sun, “Fine with “1234”? an analysis of sms one-
time password randomness in android apps,” in 2021
IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 2021, pp. 1671–1682.

[32] P. Markert, D. V. Bailey, M. Golla, M. Dürmuth, and
A. J. Aviv, “This pin can be easily guessed: Analyzing
the security of smartphone unlock pins,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020,
pp. 286–303.

[33] V. Mavroeidis and M. Nicho, “Quick response code se-
cure: a cryptographically secure anti-phishing tool for
qr code attacks,” in Computer Network Security: 7th In-
ternational Conference on Mathematical Methods, Mod-
els, and Architectures for Computer Network Security,
MMM-ACNS 2017, Warsaw, Poland, August 28-30, 2017,
Proceedings 7. Springer, 2017, pp. 313–324.

[34] Microsoft, “Microsoft playwright python,” https://
github.com/microsoft/playwright-python, 2024.

[35] S. Oesch and S. Ruoti, “That was then, this is now: A
security evaluation of password generation, storage, and
autofill in browser-based password managers,” in Pro-
ceedings of the 29th USENIX Conference on Security
Symposium, 2020, pp. 2165–2182.

[36] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart, “Be-
yond credential stuffing: Password similarity models
using neural networks,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 417–434.

[37] H. Pan, Y.-C. Chen, L. Yang, G. Xue, C.-W. You, and
X. Ji, “mqrcode: Secure qr code using nonlinearity of
spatial frequency in light,” in The 25th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, 2019, pp. 1–18.

[38] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer,
N. Christin, L. F. Cranor, S. Egelman, and A. Forget,
“Let’s go in for a closer look: Observing passwords in
their natural habitat,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, 2017, pp. 295–310.

[39] Pypi.org, “googletrans 3.0.0,” https://pypi.org/project/
googletrans/, 2024.

[40] G. Smith, T. Yadav, J. Dutson, S. Ruoti, and K. Seamons,
“" if i could do this, i feel anyone {could:}" the design
and evaluation of a secondary authentication factor man-
ager,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 499–515.

[41] M. Squarcina, P. Adão, L. Veronese, and M. Maffei,
“Cookie crumbles: breaking and fixing web session in-
tegrity,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 5539–5556.

[42] I. Stylios, S. Kokolakis, O. Thanou, and S. Chatzis, “Be-
havioral biometrics & continuous user authentication on
mobile devices: A survey,” Information Fusion, vol. 66,
pp. 76–99, 2021.

[43] C. Wang, Y. Wang, Y. Chen, H. Liu, and J. Liu, “User
authentication on mobile devices: Approaches, threats
and trends,” Computer Networks, vol. 170, p. 107118,
2020.

[44] X. Zhang, H. Ye, Z. Huang, X. Ye, Y. Cao, Y. Zhang,
and M. Yang, “Understanding the (in) security of cross-
side face verification systems in mobile apps: a system
perspective,” in 2023 IEEE Symposium on Security and
Privacy (SP). IEEE, 2023, pp. 934–950.

[45] Y. Zhang, C. Xu, H. Li, K. Yang, N. Cheng, and X. Shen,
“Protect: Efficient password-based threshold single-sign-
on authentication for mobile users against perpetual leak-
age,” IEEE Transactions on Mobile Computing, vol. 20,
no. 6, pp. 2297–2312, 2020.

https://github.com/microsoft/playwright-python
https://github.com/microsoft/playwright-python
https://pypi.org/project/googletrans/
https://pypi.org/project/googletrans/

A More Details of the QRLogin Website Col-
lection Process

Our approach to detect whether the website has QRLogin
contains four major steps:

1) Identifying the login page. Given a domain name, we
first load it into a web browser as the landing page. Then
starting from the landing page, we search for the semantics
of “login” in the HTML elements and try to navigate to the
login page. We refer to a prior work [9], which trains an SVM
binary classifier to evaluate the login forms within the HTML
content, to confirm the login page. Also, we enhance this work
by supporting websites that may use other elements including
input elements than login forms on their login pages.

2) Detecting QR code semantics. After determining the
login page, we need to determine whether the page contains
features related to QRLogin. For this purpose, we employ a
method of keyword-based heuristics. Specifically, we begin
by standardizing the language of the texts in the HTML. Then,
we ascertain whether the page texts include QRLogin-related
keywords, including “QR code”, “QR login”, “scan the code”,
and their grammatical variants. We notice that some websites
may provide a QR code for users to download resources, so
we exclude those with the semantics of resource downloading
using QR codes.

3) Finding the QRLogin app. This step is to associate the
detected QRLogin feature with its corresponding mobile app.
This is achieved by analyzing prompts or links provided on
the login page that guide users on where and how to download
or use the appropriate scanning app, for example, “Using the
provided app to scan the QR code”. We notice that not all
websites provide such hints, thus we also search the mobile
app on app markets using the domain name of the websites
as a supplement. Then manual efforts are required to further
confirm the correctness.

4) Manual confirmation. Finally, two researchers are asked
to independently verify the collected QRLogin websites. They
cross-check the login pages to confirm the presence and func-
tionality of QR codes specifically used for login. This process
involves not only visiting and reviewing the page content but
also testing the QRLogin process to ensure that it links to
the associated mobile app and functions as expected. The
researchers then compare their findings and resolve any dis-
crepancies to finalize the list of valid QRLogin deployments,
ensuring the accuracy and reliability of the collected data.

Implementation details. We implement the crawler based
on Playwright browser automation tool [34] to drive an in-
stance of Chromium Web browser. To ensure the full loading
of each web page, we wait until the network activity of the
page has reached an idle state, with a timeout limit of 10 sec-
onds, based on our observation that most websites can load
one page within 10 seconds. Besides, we use the googletrans
Python module [39] to translate the language of websites from
various countries to English to ease semantic matching.

B User Perception Analysis

B.1 Design of the User Study

In this user study to investigate the users’ perceptions on
QRLogin security, we aim to answer the following research
questions:
• RQ1: How do users engage with QRLogin?
• RQ2: What is the likelihood of QR code leakage in QR-

Login?
• RQ3: How do users perceive the potential security risks in

QRLogin?
Based on the research questions, we design a questionnaire

with 13 questions. Specifically, we show an example of a
real-world website’s QRLogin to clarify to the participants
what the QRLogin discussed in this study is to avoid any
misunderstanding. Then, to ensure that the participants have
indeed used QRLogin before, they are asked to provide any
websites/apps they have used that offer QRLogin functionality,
other than the one mentioned in the initial example. We will
verify the website/app provided for validity.

After that, participants are required to answer 7 ques-
tions concerning our research questions. Lastly, the question-
naire collects demographic information from participants,
including age, gender, education, and occupation, ensuring
the anonymity and privacy of participants. The complete ques-
tions in the questionnaire and the answers collected are listed
in §B.3.
Recruitment and Demographics. We recruited 200 partici-
pants via Wenjuanxing [6] (one of the most popular crowd-
sourcing platforms in China) in March 2024. The responses
that failed in our attention test question were rejected to en-
sure the quality of the data collected for analysis. On average,
our questionnaire took 2.3 minutes according to the responses,
and participants who completed the survey received 2 CNY
based on the local income.

In our study, we did not place any additional restrictions on
participants to avoid bias, other than having used QRLogin.
According to the demographic information collected in the
study, 47.8% participants are from 18 to 30 years old while
45.6% are from 31 to 45 years old. Female participants ac-
count for 63.3%. Besides, the majority (83.9%) of participants
have a college degree or above, and 52.8% have a professional
background of STEM (Science, Technology, Engineer, Math-
ematics).

B.2 User Perceptions to QRLogin

In the responses from 200 recruited participants having passed
the attention test, 180 participants answered at least one valid
website/app with QRLogin, while the other 20 responses are
excluded as these participants may not have used QRLogin
and their perceptions are not informative.

As for the overall result, QRLogin plays an important role
in the user’s daily life. However, QR code leakage has sub-
stantial risks, and users have insufficient security awareness
regarding QRLogin. Additionally, we also asked about users’
opinions on scanning others’ QR codes and found that users
do not perceive a significant difference in the level of danger
between the two. We discuss the detailed findings as follows.

• Finding-1: Users frequently engage in QRLogin in daily
activities, and the categories of used websites are rel-
atively sensitive. According to the responses of Q1 and
Q2, the majority of participants use QRLogin at a high
frequency. Specifically, 39.44% participants utilize QR-
Login every day and 43.89% use it several times per week.
Additionally, we collected and analyzed the websites/apps
answered in Q1 and found that their categories are mostly
sensitive, such as social, financial, and governmental. This
finding further highlights the importance of the security of
QRLogin.

• Finding-2: Many users face the risk of QR code leak-
age when performing QRLogin. As for RQ2, we collect
answers from two aspects, i.e., leaking the QR code pas-
sively and actively during QRLogin. First, the responses of
Q5 show that 41.67% of participants never or occasionally
take measures to prevent others from obtaining their QR
code. This implies that these users are likely to be passively
targeted by attackers who may steal the QR code through
methods such as taking photos. On the other hand, 12.78%
participants think it reasonable to provide their QR codes
when asked by others (Q6), and 72.78% participants are
uncertain about the reasonableness of providing their own
QR codes, thinking that it may be reasonable. This attitude
may expose users to social engineering attacks by attack-
ers, such as impersonating the website’s employees and
requesting users to provide QR codes, resulting in leaking
QR codes actively.

• Finding-3: Users have insufficient understanding and
awareness of the risks associated with QRLogin. In
the responses of Q4, participants give an average rating
of 4.82 (on a scale of 1-7, with 7 indicating very danger-
ous). This score approaching the midpoint suggests that
users lack awareness of the dangers of QR code expo-
sure, which will cause severe consequences like account
takeover illustrated in this paper. In addition, according to
the responses of Q7 and Q8, only 7.22% of participants an-
swer correctly about the information contained in the QR
code for QRLogin (without selecting any other incorrect
options). Only 15.00% answer correctly about the risk of
leaking QR codes. Moreover, only 2 (1.11%) participants
answer both questions right. The results indicate that users
have a lack of understanding of QRLogin and the associ-
ated risks, even though 83.9% of the participants have a
college degree or above.

B.3 Questionare for our User Study
Q1. Please provide specific examples of apps/websites that
have the QR code login feature, as evidence of having used the
QR code login. (Except for the provided example of 12306).
If no examples are provided or the provided apps/websites
do not have the QR code login feature, the response will be
considered invalid and no payment will be made. [Fill in the
blank]
Answer: WeChat, QQ, etc.
Q2. How often do you utilize the QR code login feature?

(A) Almost daily (71/180, 39.44%)

(B) Several times a week (79/180, 43.89%)

(C) Several times a month (25/180, 13.89%)

(D) Other lower frequency (5/180, 2.78%)

Q3. In your opinion, what is the level of risk associated with
scanning QR codes provided by others in daily life?

(A) Not dangerous at all (6/180, 3.33%)

(B) 2 (13/180, 7.22%)

(C) 3 (14/180, 7.78%)

(D) 4 (38/180, 21.11%)

(E) 5 (48/180, 26.67%)

(F) 6 (44/180, 24.44%)

(G) Extremely dangerous (17/180, 9.44%)

Q4. In your opinion, what is the level of risk associated with
showing your own QR code to others during QR code login?

(A) Not dangerous at all (7/180, 3.89%)

(B) 2 (9/180, 5%)

(C) 3 (18/180, 10%)

(D) 4 (35/180, 19.44%)

(E) 5 (48/180, 26.67%)

(F) 6 (33/180, 18.33%)

(G) Extremely dangerous (30/180, 16.67%)

Q5. Do you take measures to prevent others from obtaining
your QR code (such as preventing others from taking photos
of your QR code) when performing QR code login?

(A) Always (47/180, 26.11%)

(B) Often (58/180, 32.22%)

(C) Occasionally (58/180, 32.22%)

(D) Never (17/180, 9.44%)

Q6. Do you consider it reasonable if an app or a personnel
from a service requests you to provide a QR code?

(A) Completely reasonable (23/180, 12.78%)

(B) Possibly reasonable, uncertain (131/180, 72.78%)

(C) Completely unreasonable (26/180, 14.44%)

Q7. What kind of information do you believe is included in
the QR codes used for QR code login? [Multiple-choice]

(A) The QR code is a display of system (software) infor-
mation and does not include my personal information.
(81/180, 45%)

(B) Personal information such as name, ID card. (125/180,
69.44%)

(C) Information such as username, nickname, and avatar.
(149/180, 82.78%)

(D) Other sensitive information (if any, please list) (8/180,
4.44%)

Q8. In your opinion, what risks do you believe may arise if
a stranger obtains the QR code you use for QR code login?
[Multiple-choice]

(A) The risk of the phone being infected with viruses or
malware by others. (116/180, 64.44%)

(B) The risk of the geographical location of the phone being
obtained by others and tracked. (125/180, 69.44%)

(C) The risk of the account being logged in by others, leading
to the leakage of relevant information within the account.
(156/180, 86.67%)

(D) There are no such risks. (6/180, 3.33%)

Q9. Please select the option below that represents an animal.
[This is a test question, providing an incorrect answer will
result in no reward.]

(A) Ice cream (0/180, 0%)

(B) Refrigerator (0/180, 0%)

(C) Panda (180/180, 100%)

(D) Sunflower (0/180, 0%)

Q10. What is your age range?

(A) <18 (0/180, 0%)

(B) 18-30 (86/180, 47.78%)

(C) 31-45 (82/180, 45.56%)

(D) 46-60 (11/180, 6.11%)

(E) >61 (1/180, 0.56%)

Q11. What is your gender?

(A) Male (66/180, 36.67%)

(B) Female (114/180, 63.33%)

(C) Decline to answer (0/180, 0%)

Q12. What is the highest level of education you have com-
pleted?

(A) No high school/Some high school/High school graduate
(3/180, 1.67%)

(B) Some college – No degree (26/180, 14.44%)

(C) Associates (2-year degree) /Bachelor (4-year degree)
(133/180, 73.89%)

(D) Graduate degree – Master, PhD, professional, medicine,
etc (18/180, 10%)

Q13. Which describes best regarding your professional back-
ground?

(A) STEM (Science, Technology, Engineer, Mathematics)
(95/180, 52.78%)

(B) Liberal arts (83/180, 14.44%)

(C) Associates (2-year degree) /Bachelor (4-year degree)
(133/180, 46.11%)

(D) Other (2/180, 1.11%)

	Introduction
	Understanding Real-world QRLogin
	QRLogin Deployments in the Wild
	User Perceptions on QRLogin Security

	Analyzing QRLogin Security
	Threat Model and Analysis Procedure
	QRLogin Workflow
	Security-critical Variables in QRLogin
	Common Flaws in QRLogin

	Security Issues in the Wild
	Detection Pipeline
	Overall Results
	Typical Attacks & Case Studies
	Responsible Disclosure

	Enhancing QRLogin Security
	QRLChecker: A QRLogin Auditing Toolkit
	Suggestions for Developers
	Suggestions for Users

	Discussion
	Related Work
	Conclusion
	More Details of the QRLogin Website Collection Process
	User Perception Analysis
	Design of the User Study
	User Perceptions to QRLogin
	Questionare for our User Study

